Observational Evidence of Increasing Radiative Forcing in CERES

Ryan Kramer, NASA GSFC/USRA

Collaborators: Haozhe He, Brian Soden, Lazaros Oreopoulos, Gunnar Myhre, Piers Forster, Chris Smith

Fall 2020 CERES STM, September 16, 2020

NASA GSFC

The Basics of Global Warming

NASA Earth Observatory

Top-of-Atmosphere CERES Net Radiative Flux Anomalies

Net = Longwave (LW) + Shortwave (SW)

Forcing-Response Framework

Forcing-Response Framework

Diagnosing Radiative Responses with Kernels

Variable	Source
Temperature (T)	AIRS V6 L3
Specific Humidity (q)	AIRS V6 L3
Surface Albedo (a)	CERES-EBAF Ed4.1
Clouds (C) [Net Radiative Fluxes]	CERES-EBAF Ed4.1
Aerosol Forcing	MERRA2
GHG Forcing	NOAA-ESRL

$$IRF = dQ - \sum CR_{\chi}$$

$$CR_{\chi} = \frac{\delta R}{\delta \chi} d\chi$$
Radiative $\chi = T, q, a, C$
Kernel

TOA Radiative Flux Anomalies

Total trend = $0.038 + /- 0.02 W/m^2/Year$

Radiative Response trend = 0.002 +/- 0.02 W/m²/Year

Instantaneous Radiative Forcing

0.53 +/- 0.11 W/m²

Inconsistency in short-term variability

IRF = Total Radiation – Radiative Responses

Instantaneous Radiative Forcing

SW Instantaneous Radiative Forcing

Local Trends in SW IRF (2003-2018)

Red = Radiative Heating and **Blue = Radiative Cooling**

Dust Trends in MERRA-2

Local Trends in MERRA-2 SW IRF (2003-2018)

Conclusions

- Nearly all of the increase in CERES-observed TOA radiative imbalance is due to an increase in instantaneous radiative forcing of roughly 0.53+/-0.11 W/m²
 - LW = $0.43+/-0.1 \text{ W/m}^2$; SW = $0.1+/-0.05 \text{ W/m}^2$
- Large LW IRF increases from increasing GHG concentrations
- Smaller SW IRF increase from aerosol emission reductions
- Observations of the distinct fingerprint of anthropogenic activity on Earth's energy budget